Current-injection in a ballistic multiterminal superconductorÕtwo-dimensional electron gas Josephson junction

نویسندگان

  • R. P. Müller
  • A. Brinkman
  • G. Crecelius
  • A. Kaluza
چکیده

We study the suppression of the critical current in a multi-terminal superconductor/two-dimensional electron gas/superconductor Josephson junction by means of hot carrier injection. As a superconductor Nb is used, while the two-dimensional electron gas is located in a strained InGaAs/InP heterostructure. Two different modes of injection are employed. First, in the three-terminal injection mode, where the injection current flows from an injector contact to one of the superconducting electrodes, only a partial suppression is obtained. Second, in the four-terminal mode, where the injection current flows between two opposite injector contacts, a complete suppression is achieved. A theoretical model for the critical current suppression in a short junction is presented, which takes the two-dimensional character of the junction into account. Qualitatively, the experimental data agree well with the theoretical predictions. The injection voltage required in the experiment to suppress the supercurrent is lower than theoretically predicted. This is explained by the fact that the width of the normal region of the junction is slightly too large to be in the short-junction limit.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ballistic Four-Terminal Josephson Junction: Bistable States and Magnetic Flux Transfer

The macroscopic quantum interference effects in ballistic Josephson microstructures are investigated. The studied system consists of four bulk superconductors (terminals) which are weakly coupled through the mesoscopic rectangular normal metal (two dimensional electron gas). We show that nonlocal electrodynamics of ballistic systems leads to specific current-phase relations for the mesoscopic m...

متن کامل

Nonequilibrium Josephson current in ballistic multiterminal SNS-junctions

We study the nonequilibrium Josephson current in a long two-dimensional ballistic SNS-junction with a normal reservoir coupled to the normal part of the junction. The current for a given superconducting phase difference φ oscillates as a function of voltage applied between the normal reservoir and the SNS-junction. The period of the oscillations is πh̄vF /L, with L the length of the junction, an...

متن کامل

Charge and Spin Effects in Mesoscopic Josephson Junctions

We consider the charge and spin effects in low dimensional superconducting weak links. The first part of the review deals with the effects of electron-electron interaction in Superconductor/Luttinger liquid/Superconductor junctions. The experimental realization of this mesoscopic hybrid system can be the individual single wall carbon nanotube that bridges the gap between two bulk superconductor...

متن کامل

Mesoscopic Multiterminal Josephson Structures. I. Effects of Nonlocal Weak Coupling

We investigate nonlocal coherent transport in ballistic four-terminal Josephson structures (where bulk superconductors (terminals) are connected through a clean normal layer, e.g., a two-dimensional electron gas). Coherent anisotropic superposition of macroscopic wave functions of the superconductors in the normal region produces phase slip lines (2D analogs to phase slip centres) and time-reve...

متن کامل

Large thermoelectric effect in ballistic Andreev interferometers

Employing quasiclassical theory of superconductivity combined with Keldysh technique we investigate large thermoelectric effect in multiterminal ballistic normal-superconducting (NS) hybrid structures. We argue that this effect is caused by electron-hole asymmetry generated by coherent Andreev reflection of quasiparticles at interfaces of two different superconductors with non-zero phase differ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003